Videos

ScienceABC Videos is the audio-visual wing of your favorite Science website. Here, we present you some of the whackiest ideas and scientific phenomena through animated videos in our signature style. Subscribe to our YouTube channel “ScienceABC” to never miss a video.

According to a study published in the American Journal of Emergency Medicines, around 20 people are admitted into emergency rooms in the US every day from a microwave oven injury or a related condition. Although most of them are due to overheated water and exploding eggs, this statistic does point out that microwaves need to be handled with caution.

The wavelength of the microwaves in the oven is roughly 12 centimeters or 4.7 inches. Therefore, for any of the microwaves to completely escape from the interior of the oven, the hole would have to be at least 4.7 inches in diameter.

While 4.7 inches seems like quite a big hole, that number is theoretical. Practically speaking, even a smaller hole would cause some leakage. The most susceptible device to microwaves is your WiFi router, as conventional wireless modems operate in the 2.4 GHz ISM (industrial, scientific and medical) band, which is very close to the operating frequency range of microwave ovens (approximately 2.45 GHz). Thus, if your WiFi router is just a few inches away from a microwave with a big hole, you can rest assured that your wireless internet will go haywire, as the kindred electromagnetic waves will commingle and disrupt one another!

#microwave #microwaveovens #microwavehacks 

References:
https://doi.org/10.1016/j.ajem.2013.03.023
https://pubmed.ncbi.nlm.nih.gov/4528460/
https://doi.org/10.1088/0031-9120/39/4/003


Original Article Link:
https://www.scienceabc.com/pure-sciences/what-will-happen-if-your-microwave-oven-develops-a-hole-in-it-will-the-waves-leak.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

According to a study published in the American Journal of Emergency Medicines, around 20 people are admitted into emergency rooms in the US every day from a microwave oven injury or a related condition. Although most of them are due to overheated water and exploding eggs, this statistic does point out that microwaves need to be handled with caution.

The wavelength of the microwaves in the oven is roughly 12 centimeters or 4.7 inches. Therefore, for any of the microwaves to completely escape from the interior of the oven, the hole would have to be at least 4.7 inches in diameter.

While 4.7 inches seems like quite a big hole, that number is theoretical. Practically speaking, even a smaller hole would cause some leakage. The most susceptible device to microwaves is your WiFi router, as conventional wireless modems operate in the 2.4 GHz ISM (industrial, scientific and medical) band, which is very close to the operating frequency range of microwave ovens (approximately 2.45 GHz). Thus, if your WiFi router is just a few inches away from a microwave with a big hole, you can rest assured that your wireless internet will go haywire, as the kindred electromagnetic waves will commingle and disrupt one another!

#microwave #microwaveovens #microwavehacks

References:
https://doi.org/10.1016/j.ajem.2013.03.023
https://pubmed.ncbi.nlm.nih.gov/4528460/
https://doi.org/10.1088/0031-9120/39/4/003


Original Article Link:
https://www.scienceabc.com/pure-sciences/what-will-happen-if-your-microwave-oven-develops-a-hole-in-it-will-the-waves-leak.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

YouTube Video VVVuSTBhRmVCeldCaWlYaUhwNTZrYXFRLmtac2c0MU1hLVdB

What if There’s a HOLE in Your Microwave?

ScienceABC II views November 18, 2024 4:30 pm

Astronauts can survive in their spacesuits as long as the oxygen tanks allow them to continue breathing. The two oxygen tanks and the emergency oxygen supply in current EMU suits collectively contain 6.5 to 8 hours (+ 30 minutes) worth of oxygen.

Space exploration movies and books have led us to believe that we would instantly freeze in open space, but that is not the case. While space is indeed cold (depending on where you are), it also lacks any form of matter (definition of vacuum), and the only way left for heat to leave the body is through radiation (conduction and convection require a medium for heat transfer). Given the rate at which heat transfer via radiation occurs, the human body in space would freeze within 12-20 hours.

#spacesuits #cosmos #emu

References:
https://sitn.hms.harvard.edu/flash/2013/space-human-body/
http://web.archive.org/web/20200809151747/http://scienceline.ucsb.edu/getkey.php?key=1237
https://www.nasa.gov/pdf/188963main_Extravehicular_Mobility_Unit.pdf
https://www.nasa.gov/feature/spacewalk-spacesuit-basics
https://msis.jsc.nasa.gov/sections/section14.htm

Original Article Link:
https://www.scienceabc.com/humans/how-long-can-an-astronaut-survive-in-their-spacesuit-in-open-space.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

Astronauts can survive in their spacesuits as long as the oxygen tanks allow them to continue breathing. The two oxygen tanks and the emergency oxygen supply in current EMU suits collectively contain 6.5 to 8 hours (+ 30 minutes) worth of oxygen.

Space exploration movies and books have led us to believe that we would instantly freeze in open space, but that is not the case. While space is indeed cold (depending on where you are), it also lacks any form of matter (definition of vacuum), and the only way left for heat to leave the body is through radiation (conduction and convection require a medium for heat transfer). Given the rate at which heat transfer via radiation occurs, the human body in space would freeze within 12-20 hours.

#spacesuits #cosmos #emu

References:
https://sitn.hms.harvard.edu/flash/2013/space-human-body/
http://web.archive.org/web/20200809151747/http://scienceline.ucsb.edu/getkey.php?key=1237
https://www.nasa.gov/pdf/188963main_Extravehicular_Mobility_Unit.pdf
https://www.nasa.gov/feature/spacewalk-spacesuit-basics
https://msis.jsc.nasa.gov/sections/section14.htm

Original Article Link:
https://www.scienceabc.com/humans/how-long-can-an-astronaut-survive-in-their-spacesuit-in-open-space.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

15 0

YouTube Video VVVuSTBhRmVCeldCaWlYaUhwNTZrYXFRLkQzMHVPTWU5UjNB

How Long Can An Astronaut SURVIVE In Their Spacesuit In Open Space?

ScienceABC II 651 views November 11, 2024 4:30 pm

Athletes often use wheelchairs that have slanting wheels - this type of slanting wheel assembly is known as a camber. The wheels of these wheelchairs are tilted outwards at an angle, creating a "V" shape in the front. In technical terms, there is an angle between the wheel's plane and the vertical, called the camber angle, and such wheels are commonly known as cambered wheels. 

Adding camber does more than add to the appeal of the wheelchair; it provides many functional advantages too, like - the wider footprint makes the wheelchair more stable, reducing any risk of overturning. Adding camber has been observed to improve both the ergonomics and acceleration of wheelchairs, making it conducive for extended use in sports without inducing too much fatigue. In this video, we have explained cambered wheels and why athletes use them during sporting events.

#CamberedWheels #adaptivedesign  #wheelchairsports 

References

https://pubmed.ncbi.nlm.nih.gov/20581712/
https://pubmed.ncbi.nlm.nih.gov/22187387/
https://cloud.wikis.utexas.edu/wiki/spaces/RMD/pages/51059500/Camber+Gain+Optimization+for+Double+Wishbone+Suspension+-+Parker+Randall

Original Article Link: https://www.scienceabc.com/eyeopeners/why-do-athletic-wheelchairs-have-slanting-wheels.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCcN3IuIAR6Fn74FWMQf6lFA?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow us on Instagram!
https://www.instagram.com/scienceabcofficial/ 

Follow us on LinkedIn!
https://www.linkedin.com/company/scienceabc

Follow our Website!
https://www.scienceabc.com

Athletes often use wheelchairs that have slanting wheels - this type of slanting wheel assembly is known as a camber. The wheels of these wheelchairs are tilted outwards at an angle, creating a "V" shape in the front. In technical terms, there is an angle between the wheel's plane and the vertical, called the camber angle, and such wheels are commonly known as cambered wheels.

Adding camber does more than add to the appeal of the wheelchair; it provides many functional advantages too, like - the wider footprint makes the wheelchair more stable, reducing any risk of overturning. Adding camber has been observed to improve both the ergonomics and acceleration of wheelchairs, making it conducive for extended use in sports without inducing too much fatigue. In this video, we have explained cambered wheels and why athletes use them during sporting events.

#CamberedWheels #adaptivedesign #wheelchairsports

References

https://pubmed.ncbi.nlm.nih.gov/20581712/
https://pubmed.ncbi.nlm.nih.gov/22187387/
https://cloud.wikis.utexas.edu/wiki/spaces/RMD/pages/51059500/Camber+Gain+Optimization+for+Double+Wishbone+Suspension+-+Parker+Randall

Original Article Link: https://www.scienceabc.com/eyeopeners/why-do-athletic-wheelchairs-have-slanting-wheels.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCcN3IuIAR6Fn74FWMQf6lFA?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow us on Instagram!
https://www.instagram.com/scienceabcofficial/

Follow us on LinkedIn!
https://www.linkedin.com/company/scienceabc

Follow our Website!
https://www.scienceabc.com

133 20

YouTube Video VVVjTjNJdUlBUjZGbjc0RldNUWY2bEZBLnBtZ0NWanJTYjFZ

Why Athletes Use Wheelchairs with SLANTING Wheels?

Science ABC 2.3K views November 4, 2024 4:30 pm

Our directional sense actually results from a multitude of several senses and brain cells interacting together. In addition to the primary five senses, particularly sight and hearing, we also use proprioception and the vestibular system to help us better comprehend the world. Proprioception tells us where we are in relation to our environment, while the vestibular system in our ears helps us balance and orient ourselves in a given space. All these tools help us go where we want without bumping into every pole or getting dizzy every time we try to orient ourselves in a moving world.

Additionally, high anxiety levels and low self-confidence could also play a role in our directional abilities. If someone repeatedly tells you that you’re the world’s worst navigator, it starts to become a self-fulfilling prophecy, as you may start believing those words too.

#navigation #neuroscience #placecells

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons
Stock Music Source: elements.envato.com

References:
https://doi.org/10.1038/s41598-020-77759-8
https://blog.ochsner.org/articles/vestibular-system-and-proprioception-the-two-unknown-senses
https://doi.org/10.1207/s15427633scc0603_1
https://doi.org/10.1038/531573a
https://doi.org/10.1038/scientificamericanmind0515-12

Original Article Link:
https://www.scienceabc.com/humans/why-do-some-people-have-a-better-sense-of-direction-than-others.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

Our directional sense actually results from a multitude of several senses and brain cells interacting together. In addition to the primary five senses, particularly sight and hearing, we also use proprioception and the vestibular system to help us better comprehend the world. Proprioception tells us where we are in relation to our environment, while the vestibular system in our ears helps us balance and orient ourselves in a given space. All these tools help us go where we want without bumping into every pole or getting dizzy every time we try to orient ourselves in a moving world.

Additionally, high anxiety levels and low self-confidence could also play a role in our directional abilities. If someone repeatedly tells you that you’re the world’s worst navigator, it starts to become a self-fulfilling prophecy, as you may start believing those words too.

#navigation #neuroscience #placecells

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons
Stock Music Source: elements.envato.com

References:
https://doi.org/10.1038/s41598-020-77759-8
https://blog.ochsner.org/articles/vestibular-system-and-proprioception-the-two-unknown-senses
https://doi.org/10.1207/s15427633scc0603_1
https://doi.org/10.1038/531573a
https://doi.org/10.1038/scientificamericanmind0515-12

Original Article Link:
https://www.scienceabc.com/humans/why-do-some-people-have-a-better-sense-of-direction-than-others.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

40 7

YouTube Video VVVuSTBhRmVCeldCaWlYaUhwNTZrYXFRLmlud0d6SHVkTHpN

Why Do Some People Have a 'Good' Sense of Direction?

ScienceABC II 1.7K views November 4, 2024 4:30 pm

Smelling salts are a preparation of ammonium carbonate and perfume. When sniffed, they stimulate or arouse our senses. Concentrated ammonia is the source of a noxious, powerful stench that helps in relieving faintness and restoring lucidity.

The fumes from the smelling salts irritate the delicate membranes of our nose and lungs, which triggers an inhalation reflex that abruptly alters our breathing pattern. The blood vessels in the nasal passages suddenly expand, opening the floodgates for a surge of oxygen. The rampant flow of oxygen to the brain replenishes consciousness and makes one superiorly alert or aloof instantaneously.

Several sports medicine textbooks have consistently criticized the use of smelling salts, as they display a propensity to exacerbate spine injuries. Because the fumes trigger a reflex that causes a violent head jerk, involuntarily pulling a player away from the source of abhorrence, smelling salts can gravely aggravate head or spinal injuries.

#smellingsalts #sportsscience #salts 

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons
Stock Music Source: elements.envato.com

References:
https://doi.org/10.1136/bjsm.2006.029710
https://smellingsalts.org/smelling-salts-dangerous/
https://doi.org/10.1136/bjsm.2006.029710
https://www.si.com/nhl/2016/03/17/smelling-salts-nhl-players

Original Article Link:
https://www.scienceabc.com/humans/smelling-salts-harmful.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

Smelling salts are a preparation of ammonium carbonate and perfume. When sniffed, they stimulate or arouse our senses. Concentrated ammonia is the source of a noxious, powerful stench that helps in relieving faintness and restoring lucidity.

The fumes from the smelling salts irritate the delicate membranes of our nose and lungs, which triggers an inhalation reflex that abruptly alters our breathing pattern. The blood vessels in the nasal passages suddenly expand, opening the floodgates for a surge of oxygen. The rampant flow of oxygen to the brain replenishes consciousness and makes one superiorly alert or aloof instantaneously.

Several sports medicine textbooks have consistently criticized the use of smelling salts, as they display a propensity to exacerbate spine injuries. Because the fumes trigger a reflex that causes a violent head jerk, involuntarily pulling a player away from the source of abhorrence, smelling salts can gravely aggravate head or spinal injuries.

#smellingsalts #sportsscience #salts

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons
Stock Music Source: elements.envato.com

References:
https://doi.org/10.1136/bjsm.2006.029710
https://smellingsalts.org/smelling-salts-dangerous/
https://doi.org/10.1136/bjsm.2006.029710
https://www.si.com/nhl/2016/03/17/smelling-salts-nhl-players

Original Article Link:
https://www.scienceabc.com/humans/smelling-salts-harmful.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

24 2

YouTube Video VVVuSTBhRmVCeldCaWlYaUhwNTZrYXFRLmp2ejFFeVRZWng0

What Are SMELLING SALTS? Are They HARMFUL?

ScienceABC II 544 views October 31, 2024 5:38 pm

G-LOC, or gravity-induced loss of consciousness, is an extreme result of being subject to high G forces for sustained periods of time. Particularly common in high-speed ascents, the blood tends to pool in the lower portions of the body, completely depriving the brain. This results in a temporary loss of consciousness and, consequently, a catastrophic loss of control of the aircraft.

In order to increase their threshold for G-LOC, fighter pilots must routinely subject themselves to artificially created high G-force scenarios. This is aided by ‘human centrifuges’ that rotate at high speeds to simulate extreme in-flight situations. This acclimatizes pilots and reduces the risk of G-LOC during actual air time. While they can survive high G forces for very short intervals of time, they are trained to sustain up to 9Gs, although stunt pilots often push their limits to 12G.

#gforce #gloc #passingout 

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons, vecteezy.com
Stock Music Source: elements.envato.com

References:
https://doi.org/10.3390/ijerph17218061
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907878/
https://commons.erau.edu/cgi/viewcontent.cgi?article=1555&context=jaaer
https://www.diva-portal.org/smash/get/diva2:1183272/FULLTEXT01.pdf&ved=2ahUKEwjggeWZ3qH6AhU7D0QIHUXHA_0QFnoECBQQAQ&usg=AOvVaw2agrqLePeogQKvH3-FG-Zl

Original Article Link:
https://www.scienceabc.com/eyeopeners/why-do-fighter-pilots-pass-out-sometimes-while-flying-what-is-g-loc.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

G-LOC, or gravity-induced loss of consciousness, is an extreme result of being subject to high G forces for sustained periods of time. Particularly common in high-speed ascents, the blood tends to pool in the lower portions of the body, completely depriving the brain. This results in a temporary loss of consciousness and, consequently, a catastrophic loss of control of the aircraft.

In order to increase their threshold for G-LOC, fighter pilots must routinely subject themselves to artificially created high G-force scenarios. This is aided by ‘human centrifuges’ that rotate at high speeds to simulate extreme in-flight situations. This acclimatizes pilots and reduces the risk of G-LOC during actual air time. While they can survive high G forces for very short intervals of time, they are trained to sustain up to 9Gs, although stunt pilots often push their limits to 12G.

#gforce #gloc #passingout

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons, vecteezy.com
Stock Music Source: elements.envato.com

References:
https://doi.org/10.3390/ijerph17218061
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907878/
https://commons.erau.edu/cgi/viewcontent.cgi?article=1555&context=jaaer
https://www.diva-portal.org/smash/get/diva2:1183272/FULLTEXT01.pdf&ved=2ahUKEwjggeWZ3qH6AhU7D0QIHUXHA_0QFnoECBQQAQ&usg=AOvVaw2agrqLePeogQKvH3-FG-Zl

Original Article Link:
https://www.scienceabc.com/eyeopeners/why-do-fighter-pilots-pass-out-sometimes-while-flying-what-is-g-loc.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

10 1

YouTube Video VVVuSTBhRmVCeldCaWlYaUhwNTZrYXFRLjFKSTJMNHZpdzl3

Why Do Fighter Pilots 'Pass Out' Sometimes While Flying?

ScienceABC II 311 views October 21, 2024 4:30 pm

Aristotle suggested in 350 BC that nature abhors a vacuum, meaning that space is not empty. Between the 1600s and 1800s, many theories and laws were articulated regarding the behavior of air with respect to pressure, temperature, molecules, etc. Some of these laws include Boyle’s Law, Charles’s Law, Avogadro’s Law, the Ideal Gas Law and many more. All the laws and theories played a huge role in the discovery of space’s empty nature.

Sir Isaac Newton laid down his theory of Universal Gravitation in 1687, which explained that gravity pulls the atmosphere towards Earth’s surface. Thus, at a certain height above Earth, gravity stops acting on bodies and they drift away into space. This is why there is no oxygen in space.

#oxygen #oxygennotincluded #vacuum 

References:
http://www.sciencemag.org/news/2015/05/why-there-so-little-breathable-oxygen-space
https://odb.org/US/2011/01/21/nature-abhors-a-vacuum
https://doi.org/10.1152/physiol.00053.2012

Original Article Link:
https://www.scienceabc.com/nature/universe/no-technology-first-figure-theres-no-oxygen-space.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

Aristotle suggested in 350 BC that nature abhors a vacuum, meaning that space is not empty. Between the 1600s and 1800s, many theories and laws were articulated regarding the behavior of air with respect to pressure, temperature, molecules, etc. Some of these laws include Boyle’s Law, Charles’s Law, Avogadro’s Law, the Ideal Gas Law and many more. All the laws and theories played a huge role in the discovery of space’s empty nature.

Sir Isaac Newton laid down his theory of Universal Gravitation in 1687, which explained that gravity pulls the atmosphere towards Earth’s surface. Thus, at a certain height above Earth, gravity stops acting on bodies and they drift away into space. This is why there is no oxygen in space.

#oxygen #oxygennotincluded #vacuum

References:
http://www.sciencemag.org/news/2015/05/why-there-so-little-breathable-oxygen-space
https://odb.org/US/2011/01/21/nature-abhors-a-vacuum
https://doi.org/10.1152/physiol.00053.2012

Original Article Link:
https://www.scienceabc.com/nature/universe/no-technology-first-figure-theres-no-oxygen-space.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

35 3

YouTube Video VVVuSTBhRmVCeldCaWlYaUhwNTZrYXFRLjZ4QXFnRlRWcmgw

How Did We Discover There's NO Oxygen in Space WITHOUT Modern Tech?

ScienceABC II 956 views October 14, 2024 4:30 pm

The Fermi Paradox refers to the apparent contradiction between the high probability of extraterrestrial life in the universe and the lack of evidence or contact with such civilizations. Named after physicist Enrico Fermi, the paradox raises questions like: given the vast number of stars and potentially habitable planets, why haven't we found any signs of intelligent life? If civilizations can become advanced enough to colonize the galaxy or communicate over vast distances, why haven’t we seen signs of this? Various explanations have been proposed, including the Rare Earth Hypothesis, the Great Filter and self-destruction (civilizations may tend to self-destruct before they can make contact with others.)

Another possible explanation is that advanced civilizations might be intentionally avoiding contact with us, either observing us from a distance or choosing not to interfere with less developed civilizations. This idea, known as the "Zoo Hypothesis," suggests that extraterrestrial life may be aware of our existence but has chosen not to reveal itself. Additionally, some theories propose that civilizations capable of interstellar travel might focus their resources inward on technological advancements or virtual realities, rather than exploring or colonizing other planets. As we continue to search for answers, the Fermi Paradox remains one of the most intriguing mysteries of our time.

#FermiParadox #ExtraterrestrialLife #GreatFilterTheory

References:
https://www.stat.berkeley.edu/~aldous/Research/Ugrad/mark_yu_haihan.pdf
https://pages.uoregon.edu/jschombe/cosmo/lectures/lec28.html
https://pressbooks.cuny.edu/astrobiology/chapter/the-drake-equation-and-the-fermi-paradox/

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCcN3IuIAR6Fn74FWMQf6lFA?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow us on Instagram!
https://www.instagram.com/scienceabcofficial/ 

Follow us on LinkedIn!
https://www.linkedin.com/company/scienceabc

Follow our Website!
https://www.scienceabc.com

The Fermi Paradox refers to the apparent contradiction between the high probability of extraterrestrial life in the universe and the lack of evidence or contact with such civilizations. Named after physicist Enrico Fermi, the paradox raises questions like: given the vast number of stars and potentially habitable planets, why haven't we found any signs of intelligent life? If civilizations can become advanced enough to colonize the galaxy or communicate over vast distances, why haven’t we seen signs of this? Various explanations have been proposed, including the Rare Earth Hypothesis, the Great Filter and self-destruction (civilizations may tend to self-destruct before they can make contact with others.)

Another possible explanation is that advanced civilizations might be intentionally avoiding contact with us, either observing us from a distance or choosing not to interfere with less developed civilizations. This idea, known as the "Zoo Hypothesis," suggests that extraterrestrial life may be aware of our existence but has chosen not to reveal itself. Additionally, some theories propose that civilizations capable of interstellar travel might focus their resources inward on technological advancements or virtual realities, rather than exploring or colonizing other planets. As we continue to search for answers, the Fermi Paradox remains one of the most intriguing mysteries of our time.

#FermiParadox #ExtraterrestrialLife #GreatFilterTheory

References:
https://www.stat.berkeley.edu/~aldous/Research/Ugrad/mark_yu_haihan.pdf
https://pages.uoregon.edu/jschombe/cosmo/lectures/lec28.html
https://pressbooks.cuny.edu/astrobiology/chapter/the-drake-equation-and-the-fermi-paradox/

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCcN3IuIAR6Fn74FWMQf6lFA?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow us on Instagram!
https://www.instagram.com/scienceabcofficial/

Follow us on LinkedIn!
https://www.linkedin.com/company/scienceabc

Follow our Website!
https://www.scienceabc.com

158 20

YouTube Video VVVjTjNJdUlBUjZGbjc0RldNUWY2bEZBLjJqUks5SFMwVXU0

Fermi Paradox Explained: If There Are TRILLIONS of Planets in Space, Why Hasn’t Anyone Contacted Us?

Science ABC 3K views October 14, 2024 4:30 pm

When two molecules of hydrogen combine with one molecule of oxygen, they undergo a chemical reaction to produce two molecules of water—and also release a lot of energy. This reaction is, therefore, exothermic in nature. Hydrogen is also called “water-former” because of this reaction.

The energy released in this reaction is mostly in the form of heat. This heat imparts kinetic energy to molecules of the gaseous mixture and causes them to expand. The air surrounding the gases also starts expanding very rapidly. This sudden and quick expansion of gas molecules causes a break in the sound barrier. Thus, we hear a pop sound when hydrogen is burned due to the explosion.

The pop sound also results from impurities present in the gaseous mixture undergoing the chemical reaction.

#hydrogengas #hydrogenwater #popsound 

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons
Stock Music Source: elements.envato.com

References:
https://www.britannica.com/science/hydrogen/Isotopes-of-hydrogen
https://www.rsc.org/periodic-table/element/1/hydrogen
https://www.scientificamerican.com/article/why-does-combining-hydrog/

Original Article Link:
https://www.scienceabc.com/pure-sciences/why-does-hydrogen-burn-with-a-popping-sound.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

When two molecules of hydrogen combine with one molecule of oxygen, they undergo a chemical reaction to produce two molecules of water—and also release a lot of energy. This reaction is, therefore, exothermic in nature. Hydrogen is also called “water-former” because of this reaction.

The energy released in this reaction is mostly in the form of heat. This heat imparts kinetic energy to molecules of the gaseous mixture and causes them to expand. The air surrounding the gases also starts expanding very rapidly. This sudden and quick expansion of gas molecules causes a break in the sound barrier. Thus, we hear a pop sound when hydrogen is burned due to the explosion.

The pop sound also results from impurities present in the gaseous mixture undergoing the chemical reaction.

#hydrogengas #hydrogenwater #popsound

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons
Stock Music Source: elements.envato.com

References:
https://www.britannica.com/science/hydrogen/Isotopes-of-hydrogen
https://www.rsc.org/periodic-table/element/1/hydrogen
https://www.scientificamerican.com/article/why-does-combining-hydrog/

Original Article Link:
https://www.scienceabc.com/pure-sciences/why-does-hydrogen-burn-with-a-popping-sound.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

7 0

YouTube Video VVVuSTBhRmVCeldCaWlYaUhwNTZrYXFRLkFSZlp1c0ctcktn

Why Does Hydrogen Make That 'Pop' Sound Upon Burning?

ScienceABC II 456 views October 7, 2024 11:01 am

Carbohydrates are measured indirectly, rather than using experimental methods. First, the amount of other nutrients in the food (protein, fats, water, ash, and alcohol) is determined individually. We then subtract the sum of these individual values from the total weight of the food.
Total Carbs = 100 – (weight in grams of [protein + fat + water + ash + alcohol] in 100 g of food)

To measure protein, the nitrogen content is determined, and this amount is then multiplied by a factor to get the protein content. On average, we find the nitrogen content in proteins to be 16%.
Total Protein = Nitrogen in Food x 6.25 (1/0.16 = 6.25)

The methods used to measure fats are solvent extraction, non-solvent extraction, and a few other instrumental methods.

#dietaryhealth #carbs #proteins 

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons, vecteezy.com
Stock Music Source: elements.envato.com

References:
https://doi.org/10.3390/foods7010005
https://people.umass.edu/~mcclemen/581Lipids.html
https://www.fao.org/3/y5022e/y5022e03.htm
https://www.nia.nih.gov/health/how-read-food-and-beverage-labels
https://books.google.com/books?id=7mL1vQAACAAJ

Original Article Link:
https://www.scienceabc.com/eyeopeners/know-exactly-much-carbs-calories-proteins-etc-present-food-item.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

Carbohydrates are measured indirectly, rather than using experimental methods. First, the amount of other nutrients in the food (protein, fats, water, ash, and alcohol) is determined individually. We then subtract the sum of these individual values from the total weight of the food.
Total Carbs = 100 – (weight in grams of [protein + fat + water + ash + alcohol] in 100 g of food)

To measure protein, the nitrogen content is determined, and this amount is then multiplied by a factor to get the protein content. On average, we find the nitrogen content in proteins to be 16%.
Total Protein = Nitrogen in Food x 6.25 (1/0.16 = 6.25)

The methods used to measure fats are solvent extraction, non-solvent extraction, and a few other instrumental methods.

#dietaryhealth #carbs #proteins

Stock Video Source: elements.envato.com , pexels.com , pixabay.com, freepik.com
Stock Image Source: elements.envato.com , pexels.com , pixabay.com, freepik.com, Wikimedia Commons, vecteezy.com
Stock Music Source: elements.envato.com

References:
https://doi.org/10.3390/foods7010005
https://people.umass.edu/~mcclemen/581Lipids.html
https://www.fao.org/3/y5022e/y5022e03.htm
https://www.nia.nih.gov/health/how-read-food-and-beverage-labels
https://books.google.com/books?id=7mL1vQAACAAJ

Original Article Link:
https://www.scienceabc.com/eyeopeners/know-exactly-much-carbs-calories-proteins-etc-present-food-item.html

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCnI0aFeBzWBiiXiHp56kaqQ?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow our Website!
https://www.scienceabc.com

19 1

YouTube Video VVVuSTBhRmVCeldCaWlYaUhwNTZrYXFRLngxcW9Xemx5N1hR

How Are Carbs and Other Macronutrients Measured in Food?

ScienceABC II 255 views September 24, 2024 5:50 am

Quantum computers use the principles of quantum mechanics to process information in ways that classical computers can't. They rely on qubits, which can exist in multiple states simultaneously, allowing for more complex computations and parallel processing. Unlike classical bits, which are either 0 or 1, qubits can be in a state of 0, 1, or both simultaneously (superposition). This allows quantum computers to process a vast amount of information at once. Qubits can be entangled, meaning the state of one qubit can depend on the state of another, no matter how far apart they are. This correlation can be used to perform complex calculations more efficiently. Quantum computers could break widely used encryption methods (like RSA) due to their ability to factor large numbers quickly. This has led to the development of quantum-resistant encryption algorithms. They can simulate molecular interactions at a quantum level, significantly speeding up the drug discovery process by predicting how different compounds will behave. In this video, we have explained quantum computing in simple words and explained how quantum computers work.

#QuantumComputing #FutureOfTech #QuantumSupremacy

Video link:

Quantum entanglement explained: https://youtu.be/fkAAbXPEAtU?si=l5jUh0cCxj6jXDfE

References:
https://www.nature.com/articles/d41586-023-01692-9
https://penntoday.upenn.edu/news/googles-claims-quantum-supremacy-groundbreaking-overhyped-or-both
https://news.ucsb.edu/2019/019682/achieving-quantum-supremacy
https://mitsloan.mit.edu/ideas-made-to-matter/quantum-computing-what-leaders-need-to-know-now

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos! 
https://www.youtube.com/channel/UCcN3IuIAR6Fn74FWMQf6lFA?sub_confirmation=1

Follow us on Twitter! 
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow us on Instagram!
https://www.instagram.com/scienceabcofficial/ 

Follow us on LinkedIn!
https://www.linkedin.com/company/scienceabc

Follow our Website!
https://www.scienceabc.com

Quantum computers use the principles of quantum mechanics to process information in ways that classical computers can't. They rely on qubits, which can exist in multiple states simultaneously, allowing for more complex computations and parallel processing. Unlike classical bits, which are either 0 or 1, qubits can be in a state of 0, 1, or both simultaneously (superposition). This allows quantum computers to process a vast amount of information at once. Qubits can be entangled, meaning the state of one qubit can depend on the state of another, no matter how far apart they are. This correlation can be used to perform complex calculations more efficiently. Quantum computers could break widely used encryption methods (like RSA) due to their ability to factor large numbers quickly. This has led to the development of quantum-resistant encryption algorithms. They can simulate molecular interactions at a quantum level, significantly speeding up the drug discovery process by predicting how different compounds will behave. In this video, we have explained quantum computing in simple words and explained how quantum computers work.

#QuantumComputing #FutureOfTech #QuantumSupremacy

Video link:

Quantum entanglement explained: https://youtu.be/fkAAbXPEAtU?si=l5jUh0cCxj6jXDfE

References:
https://www.nature.com/articles/d41586-023-01692-9
https://penntoday.upenn.edu/news/googles-claims-quantum-supremacy-groundbreaking-overhyped-or-both
https://news.ucsb.edu/2019/019682/achieving-quantum-supremacy
https://mitsloan.mit.edu/ideas-made-to-matter/quantum-computing-what-leaders-need-to-know-now

If you wish to buy/license this video, please write to us at admin@scienceabc.com.

Voice Over Artist: John Staughton ( https://www.fiverr.com/jswildwood )

SUBSCRIBE to get more such science videos!
https://www.youtube.com/channel/UCcN3IuIAR6Fn74FWMQf6lFA?sub_confirmation=1

Follow us on Twitter!
https://twitter.com/abc_science

Follow us on Facebook!
https://facebook.com/sciabc

Follow us on Instagram!
https://www.instagram.com/scienceabcofficial/

Follow us on LinkedIn!
https://www.linkedin.com/company/scienceabc

Follow our Website!
https://www.scienceabc.com

465 32

YouTube Video VVVjTjNJdUlBUjZGbjc0RldNUWY2bEZBLkIzVTFORFVpd1NB

Quantum Computers Explained: How Quantum Computing Works

Science ABC 23K views September 23, 2024 4:30 pm