Does The Refractive Index Of An Object Change When It’s Charged?

Table of Contents (click to expand)

The refractive index of a material is a property of its electronic structure. If addition of charge changes the electronic structure, then the refractive index changes.

Optics is the branch of physics related to the interaction of light and matter. This interaction can be observed on a daily basis in a number of different scenarios. For example, when a pencil is put inside a cup containing water, the pencil appears to be broken above and below the water layer.

When white light strikes a glass prism, it undergoes dispersion, producing a beautiful spectrum of seven colors. This is due to the fact that the light, which travels through air, acts differently than the light that travels through water. The differences between these light beams arise because of the interaction of light with the intervening matter, i.e., water and air, in this case.

The Nature Of Light

Visible light is an electromagnetic wave. An electromagnetic wave is one that travels through electromagnetic fields. Electromagnetic fields are affected only by charged particles. For example, when an electron (a charged particle) moves through a wire, it changes the local electromagnetic field, which results in the production of electromagnetic waves.

Vector Visible Light with wave length difference between spectra colors which give different properties human eye can see white color spectrum which composed of all colors of rainbow(udaix)s
The electromagnetic spectrum of visible light. (Photo Credit : udaix/Shutterstock)

All waves have some measurable properties associated with them, including frequency, wavelength and amplitude. Visible light is an electromagnetic wave that lies in the wavelength range 400 nm – 700 nm (equivalent to a frequency range 430 THz – 750 THz).

Also Read: Why Is It So Difficult To See Underwater?

Index Of Refraction

Refraction is discussed quite often in relation to light. Refraction is actually a phenomenon associated with waves, in general. It is the change in the direction of propagation of a wave (bending) when it enters a new medium due to a change in its velocity of propagation.

The Index of Refraction or Refractive Index (n) of an object is defined as the ratio of the speed of a light wave in vacuum to the speed of light in that object. Mathematically,


c = speed of light in a vacuum

v = speed of light in the object

Also Read: What Is The Index Of Refraction (Refractive Index)?

Interaction Of Light With Matter

Atoms are the building blocks of matter. Many atoms combine (bond) with each other to form molecules. Bulk matter is an aggregation of millions of molecules. The atom consists of a positively charged nucleus, negatively charged electrons and neutral particles called neutrons.

Since the nucleus and electrons are charged, they interact with electromagnetic fields. This interaction can be measured when suitable instruments are employed to measure them. The presence of charges is responsible for the optical properties of substances.

Spectroscopy is the study of interactions between matter and electromagnetic waves. (Photo Credit : VectorMine/Shutterstock)

When a beam of visible light is incident on a material, it excites (raises the energy) the electrons of the material (one may wonder why visible light not excite the nucleus. The answer is that the energy of visible light is not enough to raise the energy of nuclei, but only of electrons). The incident beam has some frequency (f) associated with it. When it strikes the electrons, they absorb the energy and start oscillating at the same frequency as that of the incident light. Since electrons are charged particles themselves, their oscillations give rise to secondary electromagnetic waves, which move away from the electron in all directions. These electromagnetic waves have a wavelength in the visible spectrum. Thus, the electron also starts behaving as a source of light.

Since the material consists of millions of atoms with millions of electrons, the net effect is that a superposition of all the waves occurs, the outcome of which is a resultant wave with a slower phase velocity (v) than the incident wave (c).

Refractive Index And Charges

All charges produce an electric field. The addition, removal or movement of charges changes the electric field.

The refractive index of a material when subjected to an electric field, n(E), is given by the following general equation:

For most substances, higher order terms (product of E greater than 2) are negligible. Thus, the equation is simplified to:


n(0) = refractive index in the absence of an external electric field

a1, a2 = material dependent constants (electronic structure and symmetry dependent)

Refractive Index Of A Charged Substance

Until now, the discussion was limited to materials that remained neutral. When extra charges are introduced, an electric field, E, develops. This electric field interacts with the material and affects its polarization. This translates to a change in the position and orientation of dipoles. This change affects its optical properties.

The electric field due to external charge re-orients the dipoles inside the material, resulting in polarization (Photo Credit : DKN0049/Shutterstock)

The change in optical properties due to electric fields is called an electro-optic effect.

There are two types of electro-optic effects: linear electro-optic effect (Pockels effect) and non-linear electro-optic effect (Kerr effect).

Pockels Effect

The change in refractive index () depends on the 1st exponential power of the electric field strength (the change in refractive index is a linear function of the electric field strength). Mathematically, it is represented by the equation:

Kerr Effect

The change in refractive index () depends only on the 2nd exponential power of the electric field strength (the change in refractive index is a quadratic function of the electric field strength). Mathematically, it is represented by the equation:

The Answer

Thus, the addition of charge changes the refractive index because a new electric field develops, and subsequently interacts with the charges on the material. This interaction results in a change of the optical properties of the material.

How well do you understand the article above!

Can you answer a few questions based on the article you just read?

References (click to expand)
  1. E-learning TUL -
  2. 31 The Origin of the Refractive Index - The Feynman Lectures. The Feynman Lectures on Physics
  3. (2018) Kerr Effect - IFSC/USP. The University of São Paulo
  4. 3.2: Electro-Optics - Engineering LibreTexts. LibreTexts
Help us make this article better
About the Author

Argha has a Bachelors in Physics, Chemistry and Mathematics from University of Delhi, India. He enjoys discussing STEM topics and football. With a belief that studying science should be enjoyable and not scary, he wants to play his part in a changing world.